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double bond, together with the migration of one hydrogen atom 
from C(4) to the carbon atom of the carbonyl group (Scheme 
I). Neither oxetane formation nor Norrish type II reaction are 

Scheme I 

J -X = CH, 

2x = o 

observed as long as a hydrogen atom, cis to the acyl group, is 
present for the transfer.4 The stereoselectivity of the transfer 
has been demonstrated in the case of cis and trans 3,6-di-
methyl-4-acylcyclohex-l-enes,4 and the exo position of the R 
alky! group in compound 3 is reached from lanthanide-induced 
NMR chemical shift measurements.6 

The exclusive exo configuration of the R group in 4 
prompted us to adopt this photochemical reaction to the ste­
reoselective synthesis of exo-brevicomin (5). This compound, 
which is the principal component of the sex attractant produced 
in the frass of the female western pine beetle, Dendroctonus 
brevicomis, boring in ponderosa pine, has been characterized 
by Silverstein7 and synthesized by several authors.8 If one 
excepts the elegant procedure described by Mori,8 who es­
tablished the absolute configuration of both enantiomers of 
exo-brevicomin in 17 steps starting from D(—)-tartaric acid, 
all the already described methods need, at a certain stage, the 
separation of two (or three) isomers. 

Selective excitation of the carbonyl group of compound 2 
in pentane at 25 0C, using a Pyrex filter, yields ketal 4. The 
same result is obtained by taking advantage of the intermo-
lecular energy transfer technique, using 1-methylnaphthalene 
as singlet sensitizer and triplet quencher of the carbonyl group, 
with a Vycor filter. 

The Diels-Alder dimer9 of methyl vinyl ketone 2(R = CH3) 
affords ketone 6 with 65% yields when alkylated by the imine 
procedure10 of Stork and Dowd. Irradiation of ketone 6, using 

Scheme II 
2 [R=Me) 

the 1-methylnaphthalene sensitization procedure, forms the 
bicyclic ethylenic ketal 7 as the sole isomerization product (the 
yield, based on the ketal isolated by distillation, is 23%). The 
structure assigned to 7 is based on its constitution and its 
spectroscopic data which agree with the structure expected for 
l-methyl-6-exo-ethyl-7,8-dioxabicyclo[3.2.1]oct-2-ene: IR 
(CCl4) 3050, 1640, 1190, and 710 cm"1; NMR (CCl4) 5 5.66 
(2 H, m, C2 and C3 vinyl), 4.08 (1 H, broad signal, C5 meth-
ine), 3.65 (1 H, t of d, / = 6.2 and 1.6 Hz, C6 methine), 2.8-1.3 
(4 H, m, C4 methylene and 6-exo-ethylmethylene), 1.4 (3 H, 
s, C1 methyl), and 0.91 (3 H, t, / = 7 Hz, methyl of the 6-
exo-ethyl group). 

Catalytic hydrogenation (Pd over charcoal) of the double 

bond of 7 yields pure exo-brevicomin (5) with 95% (isolated) 
yields. The obtained compound is identical in spectroscopic 
properties (IR, 1H NMR, and mass spectrum) with the au­
thentic sample already described.7 

This procedure provides easy access to pure exo-brevicomin 
in three steps and 14% overall yields starting from the Diels-
Alder adduct of l-buten-3-one. 

Experimental Section 

Infrared spectra were recorded in carbon tetrachloride or as films 
on a Perkin-Elmer 357 grating spectrophotometer and were calibrated 
with the 2850 and 1603 cm"' bands of polystyrene. Ultraviolet spectra 
were recorded on a Varian-Techtron 635 ultraviolet-visible spectro­
photometer. Proton magnetic resonance spectra were measured using 
a Varian Model EM-360 in carbon tetrachloride using hexamethyl-
disilane as internal standard. Band positions are reported in parts per 
million downfield from Me4Si (8 scale). Microanalyses were per­
formed at the Microanalyses Center of the University P. and M. Curie. 
The GLC analyses were conducted on a Varian Aerograph gas 
chromatograph Model 1400 with nitrogen as carrier gas on a 10 ft X 
'/8 in. 15% SE30 column on Chromosorb W (80-100 mesh). Semi-
preparative GLC were performed on a Varian Aerograph 90-P in­
strument using a 10 ft X -% in. 30% SE-30 on Chromosorb W (45-60 
mesh). 

2-Propionyl-6-methyl-2,3-dihydro-4//-pyran (6). The Diels-Alder 
dimer 2 (R = Me) of l-buten-3-one is easily prepared according to 
Alder's procedure.9 It also represents an important fraction of the 
monomer after standing for a while at room temperature. 

2(R = Me) (14 g, 0.1 mol) was heated with 1 equiv of cyclohex-
ylamine in 150 ml of benzene and refluxed under a water separator 
until elimination of 1 equiv of water (5 h). After removal of the solvent 
under reduced pressure, the crude imine was used without further 
purification. Such a procedure eliminated the difficulties for distil-
lating the imine which foams abundantly. 

The crude imine was added to a 10% in excess of ethylmagnesium 
bromide (0.11 mol) in 120 ml of anhydrous THF. After refluxing for 
3 h, the solution was cooled at 0 0C and 15.6 g (0.11 mol) of methyl 
iodide in 20 ml anhydrous THF was added. The mixture was stirred 
overnight at room temperature and then smoothly hydrolyzed at 0 0C 
by 1 equiv of a 5% aqueous solution of acetic acid, following the Buchi 
and Powell Jr. procedure.1! After stirring for 0.5 h at 5-10 0C, the 
organic layer was separated and the aqueous fraction extracted by 4 
X 40 ml of ether. The combined organic solutions were washed with 
brine (20 ml) and dried over Na^SO4, and the solvents were removed 
under reduced pressure. Vacuum distillation of the residue yielded 
10.0 g (0.065 mol) of pure dihydropyran derivative 6: colorless liquid, 
bp 83 0C (14 mm); IR (film) 1720 and 1685 cirT1; UV (cyclohexane) 
208 nm (t 2100) and 281 nm(e38); 1HNMR 4.45(1 H,br,s),4.18 
(1 H, m), 2.58 (2 H, q, J = 7.2 Hz), 1.92 (4 H, br, s), 1.77 (3 H, s), 
and 1.02(3 H, t, J = 7.2 Hz). 

Anal. Calcd for C 9 H N O 1 : C, 70.10; H, 9.15. Found: C, 70.14; H, 
9.26. 

Irradiation of Ketone 6. A pentane solution (600 ml) of ketone 6 
(4 g) was irradiated under a nitrogen atmosphere with a medium-
pressure mercury lamp (Hanovia 450 W) through a Vycor filter and 
in the presence of 8 g of methylnaphthalene for 22 h. The reaction 
mixture was carefully concentrated in vacuo; distillation of the residue 
afforded 0.92 g of ketal 7: bp 65-66 0C (14 mm). 

Anal. Calcd for C9Hi4O^: C, 70.10; H, 9.15. Found: C, 69.86; H, 
8.85. 

Hydrogenation of Ketal 7 into exo-Brevicomin (5). The unsaturated 
ketal 7 (490 mg, 32 mmol) in 20 ml of ethyl acetate was stirred under 
hydrogen atmosphere in the presence of Pd over charcoal (absorption 
of 730 ml of HT). Filtration followed by removal of the solvent under 
careful conditions gave over 95% pure exo-brevicomin (5). A pure 
sample was obtained by GLC (SE 30; 130 0C). 
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Some years ago, we initiated a program to introduce cer­
tain enzymatic principles into the design of specific organic 
functionalization reactions. The essential idea1 was that the 
selectivity of enzymatic reactions is determined in large part 
by the geometric demands of the reagent, rather than by the 
intrinsic reactivity pattern of the substrate. This is in marked 
contrast to the usual synthetic chemical style, in which func­
tional group manipulation is used to adjust the substrate re­
activity so as to produce a desired result. 

Our first approach to this area involved the use of benzo­
phenone photochemistry.2 Various derivatives of benzophenone 
were attached to flexible substrates and to steroids and were 
then photolyzed. This led to attack on unactivated positions 
in the substrate dictated by the geometrical relationship be­
tween the substrate and the attached reagent. Good control 
was achieved using this technique, but such photochemistry 
with quantum yield less than unity is of limited practical syn­
thetic interest. Therefore, a few years ago we set out to devise 
similar reactions by which free radical chain halogenation 
processes could be directed in this same general fashion. We 
hoped to attach a reagent to a substrate and then have the re­
agent carry out a free radical halogenation whose selectivity 
would be determined by the precise geometrical relationship 
between the reagent and substrate. 

In our search for a suitable rigid free radical halogenating 
reagent, we were drawn to phenyliodine dichloride, which has 
great selectivity3 for tertiary hydrogens compared with sec­
ondary or primary CH bonds. Such a reagent promised to let 
us combine chemical selectivity of this sort with geometrical 
control. While this is not ideal in terms of our ultimate goal, 
in which geometrical control alone is to determine reactivity, 
such a combination of factors has certain practical advantages 
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in permitting selective functionalizations. We had found in our 
benzophenone photochemistry2 that with only one point of 
connection between substrate and reagent, the ester link at 
which they were joined, we frequently saw attack at several 
positions in a steroid because the reagent could swing in an arc 
under the substrate hydrogens. With a reagent which has a 
large chemical preference for tertiary hydrogens, such motion 
is not a problem in steroid functionalization. The tertiary hy­
drogens on the a face of a steroid are distributed radially from 
the oxygen at carbon 3, so any arc whose center is that oxygen 
is likely to encounter only one of these tertiary hydrogens. We 
thus set out to attach aryl iodides to steroid substrates, in order 
to carry out intramolecular halogenations using the corre­
sponding aryliodine dichlorides. 

First we undertook a short study4 of the selectivity of un­
attached phenyliodine dichloride in steroid functionalization. 

HO 

L H'5 

CH3
 C 8 H 1 ' 

3a-cholestanol 

With convenient concentrations of various steroids and 
phenyliodine dichloride in nonaromatic solvents, such as 
methylene chloride, no appreciable amount of halogenation 
of the steroid was observed when a free radical process was 
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